Virtual Lead Identification of Farnesyltransferase Inhibitors Based on Ligand and Structure-Based Pharmacophore Techniques

نویسندگان

  • Qosay A. Al-Balas
  • Haneen A. Amawi
  • Mohammad A. Hassan
  • Amjad M. Qandil
  • Ammar M. Almaaytah
  • Nizar M. Mhaidat
چکیده

Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor's binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski's "rule of five" and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors

Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma andchronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known toreduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. Thismakes the development of PDE4B subtype selective inhibitors a desirable research goal. Toachieve this goal, ligand based pharmacophore m...

متن کامل

Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors

Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma andchronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known toreduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. Thismakes the development of PDE4B subtype selective inhibitors a desirable research goal. Toachieve this goal, ligand based pharmacophore m...

متن کامل

A Combination of Receptor-Based Pharmacophore Modeling & QM Techniques for Identification of Human Chymase Inhibitors

Inhibition of chymase is likely to divulge therapeutic ways for the treatment of cardiovascular diseases, and fibrotic disorders. To find novel and potent chymase inhibitors and to provide a new idea for drug design, we used both ligand-based and structure-based methods to perform the virtual screening(VS) of commercially available databases. Different pharmacophore models generated from variou...

متن کامل

Identification of Novel HIV 1- Protease Inhibitors: Application of Ligand and Structure Based Pharmacophore Mapping and Virtual Screening

A combined ligand and structure-based drug design approach provides a synergistic advantage over either methods performed individually. Present work bestows a good assembly of ligand and structure-based pharmacophore generation concept. Ligand-oriented study was accomplished by employing the HypoGen module of Catalyst in which we have translated the experimental findings into 3-D pharmacophore ...

متن کامل

Identification of natural-product-derived inhibitors of 5-lipoxygenase activity by ligand-based virtual screening.

A natural product collection and natural-product-derived combinatorial libraries were virtually screened for potential inhibitors of human 5-lipoxygenase (5-LO) activity. We followed a sequential ligand-based approach in two steps. First, similarity searching with a topological pharmacophore descriptor (CATS 2D method) was performed to enable scaffold-hopping. Eighteen compounds were selected f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013